类型 | 变频电源 |
---|---|
用途 | 工业用 |
电光调Q干扰消除方法分析 高压窄脉冲干扰消除方法分析 电光调Q是一种高压窄脉冲,具有高电压、大电流、宽频带范围强干扰的特性,电子设备在如此干扰的环境中,往往出现死机、误动作、花屏、甚至烧损等故障,这类故障的形成原因复杂,使用传统的处理故障手段力所不及。 一 窄脉冲频带宽度分析 LH-T100模块具有高压脉冲速度为5~10nS的特定,高压恢复时间约10uS,输出退压波形如图1所示; 图1 参考文献:“基于 MOS开关的高频高压脉冲源中电磁兼容问题研究”一文中,分析了一个脉冲源的输出可以视为一个矩形周期信号, 脉宽110nS , 重复周期80kHz, 波形如图2所示。 经过分析可知, 脉冲信号的主带宽为9.1MHz。比一般的低频率脉冲信号的主带宽要高, 同时由于脉冲信号幅值为4kV,带外频率的干扰也不能忽视, 这样干扰信号的频谱分布范围 宽。在低频段其产生的干扰以近场干扰为主, 高频段以辐射干扰为主, 需要在电磁兼容措施中区别考虑。 作者使用3DB带宽及RMS频率含义,当技术指示从模拟领域转换到数字领域的时候,通常需要将频率响应转换成上升时间。例如,示波器制造商通常会给每个垂直放大器标出一个 工作带宽,也为每个探头号标出相应的 带宽。但在有些时候,某些制造商可能采用的是一个3DB带宽或一个RMS带宽。无论哪种情况,带宽和上升时间之间的转换都将取决于示波器频率响应曲线的 波形。通常我们并不需要计算出一个 的上升时间,针对本书的使用目的,这里建立了一个便于使用的近似关系式,从而可以忽略有关频率响应 波形的复杂细节。在下面的变换中,我们将频率响应转换为10~90%上升时间。无论我们规定上升时间是采用10~90%形式,还是采用脉冲中心低斜率的倒数,或是标准偏差方法的形式。相对于高度和定位数字电路问题时所需的精确度,其结果几乎没有差别。 F_3db=K/T F=脉冲响应下降3DB时的频率值 电磁干扰传播路径分为辐射干扰和传导干扰, 辐射干扰通过空间传播, 传导干扰通过电路传播。经过分析可知, 脉冲源中的干扰同样按照传播路径不同可以分为以下几种: l 脉冲输出及开关电路产生的辐射于扰通过空间传播, 将影响5V及驱动电路的PCB 线路板及信号线。 2 MOS开关模块产生的传导干扰将沿线影响5V直流源和触发信号的驱动电路。在电磁兼容设计中需针对不同的干扰传播路径采取相应的抑制措施。 三 脉冲干扰消除措施 3.1 电磁屏蔽 屏蔽分为主动屏蔽和被动屏蔽。主动屏蔽是将干扰源限制在一定空间内。被动屏蔽是对敏感设备的保护,将干扰隔离在外。按照屏蔽的场的类型可以分为电屏蔽、磁屏蔽和电磁屏蔽。其中电屏蔽主要针对近场包括对静电和低频电场的屏蔽; 磁屏蔽是对近场包括横流磁场和低频磁场的屏蔽; 电磁屏蔽是对辐射场的屏蔽。要实现对场的屏蔽必须选择好屏蔽材料。电屏蔽和电磁屏蔽的材料一般是良性导体, 磁屏蔽则主要依赖高导磁材料所具有的低磁阻使得屏蔽体内部(外部) 的磁场大大减弱。以往的屏蔽设计多采用铜、铝材料, 但是它们的磁导率低 ,对于磁屏蔽的效果几乎为零。 传统用于屏蔽盒设计的铜、铝材料其相对磁导率都比较低而被舍弃, 最终确定选取铁材料做脉冲源的屏蔽盒。 3.2 滤波电路设计 共模干扰实质是干扰电流在电缆中的所有导线上的幅度、相位相同, 其电流是在电缆与大地之间形成的回路中流动。差模干扰, 是指干扰电流在信号线与信号地线之间流动的干扰。在信号电缆中, 差模电流主要是电路的工作电流。共模扼流圈是将信号线及其回线绕在同一磁芯上。 脉冲信号的主频带带宽为500MHz,干扰信号的频谱则 为宽广, 因此工作频率成为选择铁磁材料的关键因素。经过对比发现金属性材料的工作频率最高仅为500 kHz,磁性粉材料也仅为1MHz, 对 频率的干扰信号抑制作用不强。以往选用的锰锌铁氧体材料同样存在这样问题。只有镍锌铁氧体的工作频率在百兆赫, 最终可以确定镍锌铁氧体为绕制共模电感的材料。 四 干扰消除模块 根据以上分析,这里采用措施如图5.两级共模滤波加6kV隔离电源模块隔离的措施进行干扰消除, 图4所示的干扰路径。一级共模滤波采用日本TDK公司生产的共模线圈,具有较宽的频带抑制功能,6kV隔离模块采用国产 高低温隔离模块,具有短路保护,过热保护等特点,稳定可靠,二级滤波采用镍锌铁氧体瓷材料,消除100MHz以上的射频干扰,三种解决措施,同时作用,将传统的高压窄脉冲消除到未加措施的1~5%水平。
面议